
WinSystems
PCM-UIO48/PCM-UIO96/WS16C48

Linux Device Driver

Release 1.1 May 6, 2004

1 INTRODUCTION

1.1 This driver has been built and tested on Linux Kernels 2.2 and 2.4 using the REDHAT 6.22
distribution and the SUSE 7.2 and 8.1 Professional distributions.

1.2 The driver supports the WinSystems WS16C48 Digital I/O ASIC with event sense interrupt
capability. This chip is present on the WinSystems PCM-UIO48, the PCM-UIO96 and several
WinSystems single board computers (SBC's).

1.3 This driver is provided 'as-is' and no warranty as to usability or fitness of purpose is claimed.

1.4 WinSystems does not provide support for modification to this driver. Bug reports may be sent
to linux_drivers@winsystems.com

1.5 This driver is provided under the terms of the GNU General Public License.

2 INSTALLATION

2.1 The driver code is distributed on an MS-DOS filesystem 1.44MB floppy diskette. The floppy
disk should be mounted and the contents copied to the desired development directory.

2.2 It will be necessary to become the root user to build the driver and device nodes.

2.3 The default MAJOR number for this device is 110. It may be easily changed by changing the
definition at the beginning of the Makefile. To create the driver, the device nodes, and the
sample application type :

 make all

2.4 The device driver file uio48.o , the device nodes uio48a through uio48f are created and chmod
is executed to allow access by all users and groups. These permissions can be changed
manually as desired. These device nodes are created in the current directory. New nodes can
be created manually in /dev if desired. Two sample programs are also built.

2.5 The current driver must be explicitly loaded either through init scripts or manually. In either
case insmod is used to install the driver. Since the WS16C48 chips used on the WinSystems
PCM-UIO48A, PCM-UIO96A and other boards are not plug-n-play, I/O port probing would
be problematic at best. I/O address assignments and IRQ assignments must be specified on the
command line i.e.

 insmod uio48.o io=0x320,0x330 irq=5,5

This would install the driver with support for 2 chips, The first at I/O address 320H and the
second at I/O address 330H. The list can contain up to 6 values for the 6 chips that are
supported by the driver separated by commas. Likewise the IRQs are specified on a chip by

chip basis. Interrupts can be shared as long as the hardware supports it (PCM-UIO96).
Interrupts can usually not be shared across boards, although the driver will attempt it anyway.

3 DRIVER USAGE

3.1 The WS16C48 ASIC is accessed in hardware as a byte oriented device. Therefore, the driver
is implemented as a character device. Using file I/O i.e. read, write, and seek operations
although implemented, are very inefficient, and may not always give the desired results. The
driver was designed for maximum versatility using ioctl as its principal program interface.

3.2 The file uio48io.c implements the ioctl interface and presents to the application a set of
standard C functions that may be called directly from the application without any further need
for dealing with, or understanding how to access the driver through ioctl. An application must
merely include uio48.h and link to uio48io.o to provide this simple interface.

3.3 Applications using the driver may enable interrupts on any or all of the first 24 bits of each
device. The application may further specify the polarity of the event, which will trigger the
interrupt. Within the driver itself, interrupt events are buffered and handed to waiting
processes. Further details on interrupt handling can be seen in the later sections which detail
the functions implemented through ioctl or by examining the sample programs.

3.4 Function Calls

3.4.1 int read_bit(int chip_number, int bit_number)

This function takes as an argument the chip_number (1-6)
and the bit_number (1-48) and returns 0 if the input is open or high, 1 if the
input is low, and -1 if the chip is inaccessible or invalid.

3.4.2 int write_bit(int chip_number, int bit_number, int value)

This function takes arguments similar to read_bit and adds the value argument
which is either 1 or 0. Writing a 1 to a bit sets the output pin to a low state.
Writing a 0 releases the pin so that that it is pulled high. Return value is 0 on
success or -1 if the chip is inaccessible or invalid.

3.4.3 int set_bit(int chip_number, int bit_number)

This function takes arguments of chip_number (1-6) and bit_number (1-48). The
value returned is 0 if successful or -1 if the chip_number is invalid or the chip is
not accessible. On success, the output pin associated with the bit is driven low.

3.4.4 int clear_bit(int chip_number, int bit_number)

This function takes the arguments chip_number (1-6) and bit_number (1-48). It
returns 0 on success and -1 if the chip_number is invalid or the specified chip is
not accessible. On success, the output pin associated with the bit is released to a
high state.

3.4.5 int enab_int(int chip_number, int bit_number, int polarity)

This function takes three arguments. The chip_number (1-6), the bit_number (1-
24) and the polarity (1= rising edge, 0 = falling edge). The chip is then armed
and transitions on the specified bit will cause an interrupt to occur. The driver
will buffer up these interrupts and hand them out to calling programs using

either get_int() or wait_int(). Note that the input pins on the WS16C48 are NOT
debounced and depending on what type of stimulus is presented to the input pin,
the possibility exists for multiple transitions and interrupts to occur. It is the
responsibility of the application program to filter or debounce these types of
multiple interrupts.

3.4.6 int disab_int(int chip_number, int bit_number)

This function disables polarity sensing interrupts on the specified chip_number
(1-6) at the specified bit_number (1-24). A return value of 0 signals success, a
return value of -1, indicates an invalid chip_number or an inaccessible chip.

3.4.7 int clr_int(int chip_number, int bit_number)

This function takes as arguments the chip_number (1-6) and the bit_number(1-
24) and returns 0 on success or -1 on error. This function is ordinarily not used
as the ISR in the driver will clear an interrupt as it responds to it. This function
is mostly used in the case where a chip was installed with no IRQ specification
at the time the driver was loaded with insmod but an application has enabled
event sensing anyway. Then an application can make repeated calls to get_int()
awaiting an event. When one does occur, this function, clr_int() must be called
to re-enable the sense interrupt for that particular bit.

3.4.8 int get_int(int chip_number)

This function takes a single argument of the chip_number (1-6) and returns
either 0, if no event was sensed on that chip, -1 if the chip_number was invalid
or inaccessible, or a number between 1 and 24 which indicates that an event has
occurred on that bit number. This function does NOT wait for an event. It
returns immediately with either an error (-1), the top value in the interrupt
buffer, or the result of polling the chip's registers for an event sense.

3.4.9 int wait_int(int_chip_number)

This function is nearly identical to get_int() with one major exception. If there is
no error, and if there is nothing in the event buffer, and if there is nothing in the
event sense registers of the specified chip, then the current process is suspended
and will remain so until some event is sensed on the specified chip. Certain
signals can also awaken the process and cause it to return without an actual
event having occurred. This is by design, and allows a process to be terminated
even while being suspended deep within the device driver. As with get_int()
there are three possible types of return values. 0 signals that no interrupt
occurred, -1 indicates an error, and a value between 1 and 24 signifies the bit on
which an event sense occurred.

4 SAMPLE PROGRAMS

4.1 Flash is a very simple program that illustrates how to set and clear bits on the PCM-UIO96. It
assumes that there are two chips available. We attached a series of LEDs to the output pins
and this program sequences through the bits lighting each LED, pausing, turning off the LED
and looping until the program is terminated. Flash can be built in two ways. Using the
supplied Makefile simply type :

make flash

or you can directly invoke the compiler with :

gcc -static flash.c uio48io.o -o flash

4.2 poll is quite a step-up from flash in complexity. It uses the POSIX threads capability of Linux
to create a couple of sub-processes that are used to monitor two chips for interrupts generated
by high to low transitions on any of the first 24 bits of the two chips. Whenever either of the
two monitor processes detects an interrupt, a message is displayed, and an event counter is
updated. The foreground code simulates a command based user interface. Refer to the source
code for poll.c for a further discussion of the methodology used in this program. This program
demonstrates a simple way to coordinate, in the context of a single application program, with
external asynchronous stimulus events. Poll can be rebuilt using the supplied Makefile with :

make poll

or by direct invocation of the compiler with :

gcc -D_REENTRANT -static poll.c uio48io.o -o poll -lpthread

NOTE : In both of these sample programs the -static switch is used with gcc. This causes all
of the library functions used to be permanently linked with the executable. This creates a very
large executable file. We use this technique because our ELS Linux distribution has a limited
number of dynamic libraries present on the Disk-On-Chip and it's possible that the required
library, especially in the case of pthread might not be present on the target system. It's
certainly possible, and even reccommended, that if a variety of programs are going to be run
on an embedded system, to copy over all of the dynamic libraries necessary for their operation
in which case static linking would not be required.

