WinSystems

PCM-UI0O48/PCM-UI096/\WS16C48
Linux Device Driver

Release 1.1 May 6, 2004

1 INTRODUCTION

11

12

13

14

15

This driver has been built and tested on Linux Kernels 2.2 and 2.4 using the REDHAT 6.22
distribution and the SUSE 7.2 and 8.1 Professional distributions.

The driver supports the WinSystems WS16C48 Digital 1/0 ASIC with event sense interrupt
capability. This chip is present on the WinSystems PCM-U1048, the PCM-UI096 and several
WinSystems single board computers (SBC's).

Thisdriver is provided 'as-is and no warranty as to usability or fitness of purpose is claimed.

WinSystems does not provide support for modification to this driver. Bug reports may be sent
to linux_drivers@winsystems.com

Thisdriver is provided under the terms of the GNU General Public License.

2 INSTALLATION

21

22

23

24

25

The driver codeis distributed on an MS-DOS filesystem 1.44MB floppy diskette. The floppy
disk should be mounted and the contents copied to the desired devel opment directory.

It will be necessary to become the root user to build the driver and device nodes.

The default MAJOR number for thisdevice is 110. It may be easily changed by changing the
definition at the beginning of the Makefile. To create the driver, the device nodes, and the
sample application type:

make all

The device driver file uio48.0, the device nodes uio48a through uio48f are created and chmod
is executed to allow access by all users and groups. These permissions can be changed
manually as desired. These device nodes are created in the current directory. New nodes can
be created manually in /dev if desired. Two sample programs are also built.

The current driver must be explicitly loaded either through init scripts or manually. In either
caseinsmod is used to install the driver. Since the WS16C48 chips used on the WinSystems
PCM-UIO48A, PCM-UIO96A and other boards are not plug-n-play, 1/O port probing would
be problematic at best. 1/0 address assignments and I1RQ assignments must be specified on the
command linei.e.

insmod uio48.0 10=0x320,0x330 irg=5,5
Thiswould install the driver with support for 2 chips, The first at 1/0 address 320H and the

second at 1/0 address 330H. Thelist can contain up to 6 values for the 6 chipsthat are
supported by the driver separated by commas. Likewise the IRQs are specified on a chip by



chip basis. Interrupts can be shared as long as the hardware supportsit (PCM-UI096).
Interrupts can usually not be shared across boards, although the driver will attempt it anyway.

3 DRIVER USAGE

31

3.2

33

34

The WS16C48 ASIC is accessed in hardware as a byte oriented device. Therefore, the driver
isimplemented as a character device. Using file I/O i.e. read, write, and seek operations
although implemented, are very inefficient, and may not always give the desired results. The
driver was designed for maximum versatility using ioctl asits principal program interface.

Thefile uio48io.c implements theioctl interface and presents to the application a set of
standard C functions that may be called directly from the application without any further need
for dealing with, or understanding how to access the driver through ioctl. An application must
merely include uio48.h and link to uio48io.0 to provide this simple interface.

Applications using the driver may enable interrupts on any or all of thefirst 24 bits of each
device. The application may further specify the polarity of the event, which will trigger the
interrupt. Within the driver itself, interrupt events are buffered and handed to waiting
processes. Further details on interrupt handling can be seen in the later sections which detail
the functions implemented through ioctl or by examining the sample programs.

Function Calls
34.1 intread_bit(int chip_number, int bit_number)

This function takes as an argument the chip_number (1-6)
and the bit_number (1-48) and returns O if the input is open or high, 1if the
input islow, and -1 if the chip isinaccessible or invalid.

3.4.2 intwrite_bit(int chip_number, int bit_number, int value)

This function takes arguments similar toread_bit and adds the val ue argument
which iseither 1 or 0. Writing a1 to a bit sets the output pin to alow state.
Writing a0 releases the pin so that that it is pulled high. Return valueis 0 on
success or -1 if the chip isinaccessible or invalid.

3.4.3 intset_bit(int chip_number, int bit_number)

This function takes arguments of chip_number (1-6) and bit_number (1-48). The
valuereturned is O if successful or -1 if the chip_number isinvalid or the chipis
not accessible. On success, the output pin associated with the bit is driven low.

34.4 intclear_bit(int chip_number, int bit_number)

This function takes the arguments chip_number (1-6) and bit_number (1-48). It
returns 0 on success and -1 if the chip_number isinvalid or the specified chip is
not accessible. On success, the output pin associated with the bit isreleased to a
high state.

3.4.5 int enab_int(int chip_number, int bit_number, int polarity)

This function takes three arguments. The chip_number (1-6), the bit_number (1-
24) and the polarity (1= rising edge, 0 = falling edge). The chip is then armed
and transitions on the specified bit will cause an interrupt to occur. The driver
will buffer up these interrupts and hand them out to calling programs using



either get_int() or wait_int(). Note that the input pins on the WS16C48 are NOT
debounced and depending on what type of stimulusis presented to the input pin,
the possibility exists for multiple transitions and interruptsto occur. It isthe
responsihility of the application program to filter or debounce these types of
multiple interrupts.

34.6 intdisab_int(int chip_number, int bit_number)

This function disables polarity sensing interrupts on the specified chip_number
(1-6) at the specified bit_number (1-24). A return value of 0 signals success, a
return value of -1, indicates an invalid chip_number or an inaccessible chip.

3.4.7 intclr_int(int chip_number, int bit_number)

This function takes as arguments the chip_number (1-6) and the bit_number (1-
24) and returns 0 on success or -1 on error. This function is ordinarily not used
asthe ISR in the driver will clear an interrupt as it responds to it. This function
ismostly used in the case where a chip was installed with no IRQ specification
at the time the driver was loaded with insmod but an application has enabled
event sensing anyway. Then an application can make repeated calls to get_int()
awaiting an event. When one does occur, this function, clr_int() must be called
to re-enable the sense interrupt for that particular bit.

34.8 int get_int(int chip_number)

This function takes a single argument of the chip_number (1-6) and returns
either 0, if no event was sensed on that chip, -1 if the chip_number wasinvalid
or inaccessible, or anumber between 1 and 24 which indicates that an event has
occurred on that bit number. This function does NOT wait for an event. It
returns immediately with either an error (-1), the top value in the interrupt
buffer, or the result of polling the chip's registers for an event sense.

34.9 intwait_int(int_chip_number)

Thisfunction is nearly identical to get_int() with one major exception. If thereis
no error, and if there is nothing in the event buffer, and if thereis nothing in the
event sense registers of the specified chip, then the current processis suspended
and will remain so until some event is sensed on the specified chip. Certain
signals can also awaken the process and cause it to return without an actual
event having occurred. Thisis by design, and allows a process to be terminated
even while being suspended deep within the device driver. Aswith get_int()
there are three possible types of return values. 0 signals that no interrupt
occurred, -1 indicates an error, and a value between 1 and 24 signifies the bit on
which an event sense occurred.

4 SAMPLE PROGRAMS

4.1 Flash isavery simple program that illustrates how to set and clear bits on the PCM-UIQ96. It
assumes that there are two chips available. We attached a series of LEDs to the output pins
and this program sequences through the bits lighting each LED, pausing, turning off the LED
and looping until the program is terminated. Flash can be built in two ways. Using the
supplied Makefile simply type:

make flash



4.2

or you can directly invoke the compiler with :
gcc -static flash.c uio48io.0 -o flash

poll is quite a step-up from flash in complexity. It uses the POSIX threads capability of Linux
to create a couple of sub-processes that are used to monitor two chips for interrupts generated
by high to low transitions on any of the first 24 bits of the two chips. Whenever either of the
two monitor processes detects an interrupt, a message is displayed, and an event counter is
updated. The foreground code simulates a command based user interface. Refer to the source
caode for poll.c for afurther discussion of the methodology used in this program. This program
demonstrates a simple way to coordinate, in the context of a single application program, with
external asynchronous stimulus events. Poll can be rebuilt using the supplied Makefile with :

make poll
or by direct invocation of the compiler with :
gcc -D_REENTRANT -static poll.c uio48i0.0 -o poll -Ipthread

NOTE : In both of these sample programs the -static switch is used with gcc. This causes all
of the library functions used to be permanently linked with the executable. This creates avery
large executabl e file. We use this technique because our ELS Linux distribution has alimited
number of dynamic libraries present on the Disk-On-Chip and it's possible that the required
library, especially in the case of pthread might not be present on the target system. It's
certainly possible, and even reccommended, that if avariety of programs are going to be run
on an embedded system, to copy over all of the dynamic libraries necessary for their operation
in which case static linking would not be required.



