
 5/16/2011 1

Rev 1.0

PCM-VDX Digital I/O

DOS Utilities Package

1 Introduction

1.0 The PCM-VDX DOS Utilities Package consists of an application programming interface

(API) and example application programs.

1.1 The applications were built with Borland C++ Version 3.1.

1.2 The applications are for use with WinSystems, Inc. PCM-VDX-1-256 and PCM-VDX-2-

512 Single Board Computers (SBC) which provide 16-lines of TTL-compatible digital I/O.

1.3 This software is provided on an 'as-is' basis and no warranty as to usability or fitness of

purpose is inferred or claimed.

1.4 WinSystems, Inc. does not provide support for the modification of these programs.

Customer application specific queries can be sent to: support@winsystems.com.

2 Installation and Build

2.1 The API functions and the sample application programs are provided in source code form

in a compressed zipped folder.

2.2 Each application can be built by creating a Project within the Borland C++ IDE. The API

file (pcmvdx.c) and the specific application file should be added to the project.

2.3 An executable file is built that can be run from a DOS prompt. Each program will specify if

any command line arguments are required.

 PCM-VDX Digital I/O DOS Utilities Package

 5/16/2011 2

Rev 1.0

3 Application Usage

3.1 The PCM-VDX Digital I/O consists of sixteen dedicated programmable I/O pins consisting

of two individual 8-bit ports. Each port can be configured as GPIO or Pulse Width Modulation

(PWM) outputs.

All GPIO pins are independent and can be configured as inputs or outputs. When configured as

outputs, pins have 8 mA drive capability and are unterminated; when configured as inputs, pins

are pulled-high with a 75k ohm resistance. Each input pin also supports interrupt triggers.

All PWM pins are independent and can be configured to output a continuous frequency or a

fixed number of pulses. The frequency is selected by programming high and low pulse count

values. An interrupt can be used to indicate when a pulse count has completed.

The features are configured and controlled utilizing PCI configuration and I/O access

instructions.

3.2 The file pcmvdx.c implements the application interface and presents to applications a set of

standard C functions that may be called directly from the application. An application must

include pcmvdx.h.

3.3 All application programs assume that any Multi-Function Port being used has been

configured for GPIO using the BIOS Setup Utility.

3.4 Application Programming Interface

The Application Programming Interface file (pcmvdx.c) provides the following functions.

3.4.1 void init_gpio(void)

This function initializes all I/O pins as inputs, disables all interrupt sensing, and sets the internal

port and direction image values. It requires no arguments.

3.4.2 int init_pwm(unsigned int addr, unsigned int irqnum, unsigned long pwmclk)

This function initializes the PWM I/O base address, interrupt, and clock source and disables all

interrupt sensing. It requires arguments of I/O address, interrupt number, and PWM internal

clock frequency. The address provides a 16-bit I/O base address for the PWM registers. It must

be mapped on a 512-byte boundary. The interrupt number provides the IRQ path used to

generate the CPU interrupt. The clock argument selects either a 10 MHz (0) or 50 MHz (1)

internal clock source. A zero is returned if the function is successful. If an invalid interrupt is

selected, a one is returned.

3.4.3 void set_port_dir(int port, int direction)

This function configures each bit of the specified port as either input or output. It requires

arguments of I/O port and direction. The port provides the GPIO port (0 or 1) and the direction

configures each bit as either an input (0) or output (1).

 PCM-VDX Digital I/O DOS Utilities Package

 5/16/2011 3

Rev 1.0

3.4.4 int read_bit(int port, int bit_number)

This function returns the state of the specified I/O pin. It requires arguments of I/O port and bit

number. The port provides the GPIO port (0 or 1) and the bit number (0-7) provides the bit

location to read. The value is returned.

3.4.5 void write_bit(int port, int bit_number, int val)

This function writes a 0 or 1 to the specified I/O pin. It requires arguments of I/O port, bit

number, and value. The port provides the GPIO port (0 or 1) and the bit number (0-7) provides

the bit location to write. The value either clears the bit (0) or sets the bit (1).

3.4.6 void set_bit(int port, int bit_number)

This function sets the specified bit in the specified port. It requires arguments of I/O port and bit

number. The port provides the GPIO port (0 or 1) and the bit number (0-7) provides the bit to set.

3.4.7 void clear_bit(int port, int bit_number)

This function clears the specified bit in the specified port. It requires arguments of I/O port and

bit number. The port provides the GPIO port (0 or 1) and the bit number (0-7) provides the bit to

set.

3.4.8 int enab_int(int port, int bit_number, int irqnum, int polarity)

This function enables an interrupt for the specified port and bit at the specified polarity. This

function does not setup the interrupt controller, nor does it supply an interrupt handler. It requires

arguments of I/O port, bit number, interrupt number, and polarity. The port provides the GPIO

port (0 or 1) and the bit number (0-7) provides the bit interrupt to enable. The interrupt number

provides the IRQ used to generate the CPU interrupt. The polarity selects whether the interrupt is

active high (1) or active low (0). A zero is returned if the function is successful. If an invalid

interrupt is selected, a one is returned.

3.4.9 void disab_int(int port)

This function disables interrupts for the specified port. It requires an argument of I/O port. The

port provides the GPIO port (0 or 1).

3.4.10 void clr_int(int port, int bit_number)

This function clears the specified bit interrupt status once it has been recognized. The interrupt

remains enabled. It requires arguments of I/O port and bit number. The port provides the GPIO

port (0 or 1) and the bit number provides the bit (0-7) to clear.

3.4.11 int get_int(void)

This function returns the first bit with an interrupt pending. It requires no arguments. It returns a

value from 1 (Port 0 – Bit 0) to 16 (Port 1 - Bit 7). If no interrupt is pending, a zero is returned.

This function does NOT clear the interrupt.

3.4.12 void enab_pwm(int chan, unsigned long low, unsigned long high)

This function enables the specified PWM channel in continuous mode and programs both the

pulse low and high registers. It requires arguments of PWM channel, pulse low count, and pulse

 PCM-VDX Digital I/O DOS Utilities Package

 5/16/2011 4

Rev 1.0

high count. The channel provides the PWM bit to enable (0-15). The pulse low count and pulse

high count generate the frequency of the waveform (0-2^16).

3.4.13 void enab_pwm_rc(int chan, unsigned long low, unsigned long high, unsigned long

repeat)

This function enables the specified PWM port in non-continuous mode. The repeat count value

and both the pulse low and high registers are loaded with the selected values. It requires

arguments of PWM channel, pulse low count, pulse high count, and repeat count. The channel

provides the PWM bit to enable (0-15). The pulse low count and pulse high count generate the

frequency of the waveform (0-2^16). The repeat count determines the number of pulses to

generate. If enabled an interrupt is generated at completion of the repeat count.

3.4.14 void disab_pwm(int chan)

This function disables the specified PWM port and resets both the pulse low and high counts. It

requires a single argument of PWM channel. The channel provides the PWM channel (0-15) to

disable.

3.4.15 void enab_pwm_int(int chan)

This function enables interrupts for the specified PWM channel. It is only valid in non-

continuous mode. This function does not setup the interrupt controller, nor does it supply an

interrupt handler. It requires a single argument of PWM channel. The channel provides the PWM

channel (0-15) interrupt to enable.

3.4.16 void disab_pwm_int(int chan)

This function disables interrupts for the specified PWM channel. It requires a single argument of

PWM channel. The channel provides the PWM channel (0-15) interrupt to disable.

3.4.17 void clr_pwm_int(int chan)

This function clears the specified PWM channel interrupt status once it has been recognized. The

interrupt remains enabled. It requires a single argument of PWM channel.

3.4.18 int get_pwm_int(void)

This function returns the first PWM channel with an interrupt pending. It requires no arguments.

It returns a value from 1 (PWM0) to 16 (PWM15). If no interrupt is pending, a zero is returned.

This function does NOT clear the interrupt.

 PCM-VDX Digital I/O DOS Utilities Package

 5/16/2011 5

Rev 1.0

4 Sample Applications

The application programs provide demonstrations of all of the functions available in the

pcmvdx.c API. All programs assume that both Port 0 and Port 1 have been appropriately

configured for either GPIO or PWM mode using the BIOS Setup Utility. Some of the programs

require an oscilloscope to verify signals on the selected PWM channel.

4.1 GPIO_Prt

This program requires all bits of Port 0 to be connected to the corresponding bits of Port 1. It

configures all bits of Port 0 as output and those of Port 1 as input. It then verifies that each bit of

Port 0 can be set and cleared. The ports directions are then reversed and each bit of Port 1 is

tested and verified.

4.2 GPIO_Int
This program requires a single bit of Port 0 to be connected to the corresponding bit of Port 1.

The global variable BitNo should reflect which bit was selected. It configures the Port 0 bit as

output and the Port 1 bit as input. It also enables interrupts on the Port 1 bit. The desired IRQ is

passed as a command line argument and a new interrupt handler is installed. Each time a key is

hit, a single pulse is generated and receipt of the proper interrupt is verified.

4.3 PWM_Prt

This program requires two PWM channels to be connected to an oscilloscope. The selected

channels should be reflected in the variables ch1 and ch2. The I/O base address is hard coded to

1200h. If a different address is desired, the IO_BASE definition can be changed. The two

channels are programmed with various frequencies and duty cycles while in continuous mode.

The waveform properties are displayed on the console and should be verified. Each time a key is

hit a new waveform is displayed.

4.4 PWM_Int
This program requires a single PWM channel to be connected to an oscilloscope. The selected

channel should be reflected in the variable ChanNo. The I/O base address is hard coded to

1200h. If a different address is desired, the IO_BASE definition can be changed. The channel is

programmed to output a 10 pulse waveform with a frequency of 2.5 MHz and a 50% duty cycle

each time a key is hit. The desired IRQ is passed as a command line argument and a new

interrupt handler is installed. Each time a key is hit, the receipt of the proper interrupt is verified.

