

5/11/2011 1

Rev 1.0

PCM-VDX GPIO Device Driver Package

2.6.32 Kernel-Based Linux

1 Introduction

1.0 The PCM-VDX GPIO Device Driver Package consists of a Linux Device Driver, an

application programming interface library, and example application programs.

1.1 The driver was built and tested on a Linux version 2.6.32-24-generic based Ubuntu 10.04

Lucid Lynx distribution.

1.2 The applications are for use with WinSystems, Inc. PCM-VDX-1-256 and PCM-VDX-2-

512 Single Board Computers (SBC) which provide 16-lines of TTL-compatible digital I/O.

1.3 This driver is provided on an 'as-is' basis and no warranty as to usability or fitness of

purpose is inferred or claimed.

1.4 WinSystems, Inc. does not provide support for the modification of this driver. Customer

application specific queries can be sent to: support@winsystems.com and bug reports may be

sent to: linux_drivers@winsystems.com.

1.5 This work is provided under the terms of the GNU General Public License (GPL).

2 Installation and Build

2.0 The device driver and the sample applications are provided in source code form as a

gzipped TAR-ball.

2.1 It will be necessary to become the root user to build and install the driver and device nodes.

2.2 All application programs assume that any Multi-Function Port being used has been

configured for GPIO mode using the BIOS Setup Utility.

2.3 The MAJOR number for this device is allocated dynamically. A static number can be

assigned by editing the pcmvdxgpio_init_major variable at the beginning of pcmvdxgpio.c.

2.4 To create the device driver Loadable Kernel Module and the sample applications in a

command shell, execute: make all. The device driver Loadable Kernel Module pcmvdxgpio.ko is

created and moved to the appropriate kernel driver directory. The file access permissions are set

to allow access by all users and groups; they may be changed manually as desired. The three

sample programs, flash, poll, and ioctl, are also built.

 PCM-VDX GPIO Device Driver Package

5/11/2011 2

Rev 1.0

make install will install the kernel driver to a kernel directory and create dependencies.

make uninstall will remove the kernel driver from the kernel directory.

make flash will create the flash sample program.

make poll will create the poll sample program.

make ioctl will create the ioctl sample program.

make clean will remove objects created by the build.

make spotless will forcibly remove all artifacts of the build.

2.5 The device driver can be loaded with the provided initialization script pcmvdxgpio_load or

manually. In either case modprobe is used to install the driver. Executing:

modprobe pcmvdxgpio.ko

The pcmvdxgpio_load script can be added to the /etc/rc.local file to load the driver

automatically on boot.

3 Driver Usage

3.0 The PCM-VDX Digital I/O consists of sixteen dedicated programmable I/O pins consisting

of two individual 8-bit ports. Each port can be configured as GPIO or Pulse Width Modulation

(PWM) outputs.

All GPIO pins are independent and can be configured as inputs or outputs. When configured as

outputs, pins have 8 mA drive capability and are unterminated; when configured as inputs, pins

are pulled-high with a 75k ohm resistance. Each input pin also supports interrupt triggers.

All PWM pins are independent and can be configured to output a continuous frequency or a

fixed number of pulses. The frequency is selected by programming high and low pulse count

values. An interrupt can be used to indicate when a pulse count has completed.

The features are configured and controlled utilizing PCI configuration and I/O access

instructions.

3.1 The file pcmvdxgpioio.c implements the ioctl interface and presents to the application a set

of standard C functions that may be called directly from the application without any need for

dealing with, or understanding how to access the driver through ioctl. An application must

include pcmvdxgpio.h and link to pcmvdxgpioio.o.

3.2 Applications using the driver may enable interrupts on any or all of the bits. The

application may further specify the event polarity which will trigger the interrupt. Within the

driver itself, interrupt events are buffered and handed to waiting processes. Further details on

interrupt handling can be seen in the later sections which detail the functions implemented

through ioctl or by examining the sample programs.

 PCM-VDX GPIO Device Driver Package

5/11/2011 3

Rev 1.0

3.3 Application Programming Interface

An object file containing the Application Programming Interface utilized by user level programs

to access the Kernal Loadable Module device driver driven devices is created as part of the build

procedure.

3.3.0 int ioctl_set_port_dir(int port, int direction)

This function requires arguments of port (0-1) and a byte, direction. Each bit of the direction

argument corresponds to the same bit in the specified port. Each bit can be configured as an input

(0) or output (1). Return value is 0 on success or -1 if the device is inaccessible.

3.3.1 int ioctl_read_bit(int port, int bit_number)

This function requires arguments of port (0-1) and bit_number (0-7). It returns 0 if the input is

low or 1 if the input is high. A -1 is returned if the device is inaccessible.

3.3.2 int ioctl_set_bit(int port, int bit_number)

This function requires arguments of port (0-1) and bit_number (0-7). Return value is 0 on

success or -1 if the device is inaccessible. On success, the output pin associated with the bit is

driven high.

3.3.3 int ioctl_clr_bit(int port, int bit_number)

This function requires arguments of port (0-1) and bit_number (0-7). Return value is 0 on

success or -1 if the device is inaccessible. On success, the output pin associated with the bit is

driven low.

3.3.4 unsigned int ioctl_read_port(int port)

This function requires an argument of port (0-1). It returns the current value of the specified port.

A -1 is returned if the device is inaccessible.

3.3.5 int ioctl_write_port(int port, int value)

This function requires arguments of port (0-1) and a byte, value. The value argument is the

desired state of the specified port. Return value is 0 on success or -1 if the device is inaccessible.

3.3.6 int ioctl_enab_int(int port, int bit_number, int polarity)

This function requires arguments of port (0-1), bit_number (0-7) and polarity (1= rising edge, 0 =

falling edge). The device is then armed and transitions on the specified bit will cause an interrupt

to occur. The driver will buffer these interrupts and hand them to calling programs using either

ioctl_get_int() or ioctl_wait_int(). Note that the input pins on the device are NOT debounced and

depending on what type of stimulus is presented to the input pin, the possibility exists for

multiple transitions and interrupts to occur. It is the responsibility of the application program to

filter or debounce these types of multiple interrupts. Return value is 0 on successor or -1 if the

device is inaccessible.

3.4.7 int ioctl_disab_int(int port)

This function requires an argument of port (0-1). This function disables polarity-sensing

interrupts on the specified bit number. Return value is 0 on success or -1 if the device is not

accessible.

 PCM-VDX GPIO Device Driver Package

5/11/2011 4

Rev 1.0

3.3.8 int ioctl_get_int(void)
This function requires no arguments and returns a bit value for which an interrupt event has

occurred. Returns values from 1 to 16 correspond to Port 0-Bit 0 to Port 1-Bit 7. Return value is

0 if no event has occurred on any bit or -1 if the device is not accessible. This function does NOT

wait for an event.

3.3.9 int ioctl_clr_int(int port, int bit_number)
This function requires arguments of port (0-1) and bit_number (0-7). This function is ordinarily

used within the Interrupt Service Routine to clear an interrupt and re-enable the sense interrupt

for that particular bit. Return value is 0 on success or -1 if the device is not accessible.

3.3.10 int ioctl_wait_int(void)
This function requires no arguments. This function is nearly identical to ioctl_get_int() with one

major exception. If there is no error and no event has occurred, the current process will sleep

until some event is sensed. Certain signals can also awaken the process and cause it to return

without an actual event having occurred. This is by design, and allows a process to be terminated

even though it is asleep. As with ioctl_get_int() there are three possible types of return values: 0

signals that no interrupt occurred, -1 indicates the device is not accessible, and a value between 1

and 16 indicates the bit on which an event sense occurred.

4 Sample Programs

4.0 Flash

The “Flash” sample application is a simple program that illustrates how to set and clear output

points. All I/O points are programmed to be outputs and cleared. Then starting with the least

significant bit, each bit is set and after a fixed interval, cleared. The sequence is repeated

indefinitely. The Flash executable is built as part of the driver build, but may be built separately

by: make flash.

4.1 Poll
The “Poll” sample application is a step-up from “Flash” in complexity. It uses the POSIX threads

capability of Linux to create two sub-processes that are used to monitor the device for interrupts

generated by high to low transitions on any of 16 bits. Whenever either of the two monitor

processes detects an interrupt, a message is displayed, and an event counter is updated. The

foreground code simulates a command based user interface. Refer to the source code of poll.c for

a further discussion of the methodology used in this program. This program demonstrates a

simple way to coordinate, in the context of a single application program, with external

asynchronous stimulus events. The Poll executable may be built separately by: make poll.

4.2 Ioctl

The “Ioctl” sample application is a simple program that manipulates the ports using different

function calls. The Ioctl executable is built as part of the driver build, but may be built separately

by: make ioctl.

